Note

THERMODYNAMIC FUNCTIONS AND STABILITY CONSTANTS OF L-LYSINE MONOHYDROCHLORIDE

USHA SHARMA

Department of Chemistry, D.A.V. (P.G.) College, Dehra Dun 248 001 (India) (Received 28 March 1984)

Work on L-lysine monohydrochloride has been recently undertaken in this laboratory with particular reference to the binding sites of L-lysine monohydrochloride with metal ions [1-6].

Considering the biological significance of amino acids, a study of the complexing ability of L-lysine monohydrochloride with different metal ions [6], and the distribution of these complexes as a function of pH is of importance. The present study was undertaken to gain some insight into metal-ligand interactions, which could help in understanding the role of metal ions in general and particularly in coordination compounds. It was further felt that to the complexes of L-lysine monohydrochloride would also be interesting for biological systems.

In the present communication, the stability constants, stoichiometry, thermodynamic functions, and X-ray study of chelates of L-lysine monohydrochloride are described.

EXPERIMENTAL

All chemicals and apparatus used were as previously described [1].

The usual method of synthesising these chelates has also been described earlier [1].

RESULTS AND DISCUSSION

The conductance and pH measurements of the resulting solution revealed that all the metals studied form complexes with the ligand in ligand/metal ratios 1:1 and 1:2.

The percentage of carbon, hydrogen, nitrogen and metal were related to calculated figures.

The respective values of ΔG , ΔH and ΔS of the complexation reaction have been evaluated at 30 and 40 °C by employing the Gibbs-Helmholtz and isobar equations [7] and are given in Table 1.

TABLE 1

Composition of complexes	log K		$-\Delta G$	$-\Delta H$	ΔS
	30°C	40 ° C	(kcal mol^{-1})	(kcal mol^{-1})	$(\operatorname{cal} \mathbf{K}^{-1} \operatorname{mol}^{-1})$
Pd(II) – Lys					
1:1	1.64	1.55	2.28	3.39	- 4.01
1:2	3.17	3.10	9.30	2.57	8.33
Rh(III) – Lys					
1:1	1.99	1.89	2.75	3.48	- 2.21
1:2	3.47	3.40	5.70	3.40	-2.40
Pt(IV) – Lys					
1:1	1.88	1.86	2.65	3.38	- 2.41
1:2	3.50	3.39	5.12	2.52	- 8.58

Stability constants and thermodynamic functions at 30 and $40 \degree C$ (Lys = L-lysine monohydrochloride)

The results (Table 1) reveal that stability constant values decrease with increasing temperature. This indicates that a lower temperature is favourable for the complexation reaction to proceed spontaneously and that it is an exothermic process. This also explains the decrease in the values of log K with increasing temperature; the overall entropy change being positive for Pd(II), Rh(III) and Pt(IV) with L-lysine monohydrochloride.

The X-ray powder photographs of the complexes have been studied by Bragg's equation

$\lambda = 2d\sin\theta$

The grazing angle, θ , lattice spacing value, d, and relative intensity have been calculated using a value of 1.5418 Å for λ . This study indicates that they are all crystalline in nature.

ACKNOWLEDGEMENT

The author thanks U.G.C., New Delhi, for granting the award of a Research Associateship.

REFERENCES

- 1 A.K. Jain, K.D. Jain and U. Sharma, J. Indian Chem. Soc., 57 (1980) 963.
- 2 U. Sharma and N. Chandra, Thermochim. Acta, 59 (1982) 125.
- 3 N. Chandra and U. Sharma, Thermochim. Acta, 62 (1983) 125.
- 4 U. Sharma and N. Chandra, Thermochim. Acta, 65 (1983) 387.
- 5 U. Sharma, Thermochim. Acta, 66 (1983) 369.
- 6 U. Sharma and N. Chandra, Indian J. Phys. Nat. Sci., 3 (1983) 51.
- 7 K.B. Yatsimirskii and V.P. Vasil's Ev, Instability Constants g Complex Compounds, Van Nostrand, New York, 1960, p. 63.

۰